Andrews, M. G., & Taylor, L. L. (2019) Combating Climate Change Through Enhanced Weathering of Agricultural Soils. Elements 15(4):253–258. doi:10.2138/gselements.15.4.253
Bach, L. T., et al. (2019) CO2 Removal With Enhanced Weathering and Ocean Alkalinity Enhancement: Potential Risks and Co-benefits for Marine Pelagic Ecosystems. Frontiers in Climate 1. doi:10.3389/fclim.2019.00007
Bastin, J. F., et al. (2019) The global tree restoration potential. Science 365, 76–79 (2019)
Beerling, D. J., et al. (2020) Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 583:242-261.
Davies, L. L., Uchitel, K., & Ruple, J. (2013) Understanding barriers to commercial-scale carbon capture and sequestration in the United States: An empirical assessment. Energy Policy 59:745–761. doi:10.1016/j.enpol.2013.04.033
Day, M. V., Fiske, S. T., Downing, E. L., & Trail, T. E. (2014). Shifting Liberal and Conservative Attitudes Using Moral Foundations Theory. Personality and Social Psychology Bulletin 40(12), 1559–1573.
Feinberg, M., & Willer, R. (2012). The Moral Roots of Environmental Attitudes. Psychological Science 24(1), 56–62. doi:10.1177/0956797612449177
Greene, C. H., et al. (2017) Geoengineering, marine microalgae, and climate stabilization in the 21st century. Earth’s Future 5. doi:10.1002/2016EF000486.
Herrero, M., et al. (2016). Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change 6(5):452–461. doi:10.1038/nclimate2925
Hepburn, C., et al. (2019) The technological and economic prospects for CO2 utilization and removal. Nature 575:87-97.
Keith, D. W., et al. (2018) A process for capturing CO2 from the atmosphere. Joule 2:1573-1594.
Lakoff, G. (1994) Moral Politics. Chicago University Press.
Law, B. E., et al. (2018). Land use strategies to mitigate climate change in carbon dense temperate forests. Proceedings of the National Academy of Sciences 115(14):3663–3668. doi:10.1073/pnas.1720064115
Marcucci, A., Kypreos, S., & Panos, E. (2017) The road to achieving the long-term Paris targets: energy transition and the role of direct air capture. Climatic Change 144(2):181–193. doi:10.1007/s10584-017-2051-8
Madeira, M. S., et al. Microalgae as feed ingredients for livestock production and meat quality: a review. Livestock Science http://dx.doi.org/10.1016/j.livsci.2017.09.020
Majumdar, A., & Deutch, J. (2018) Research Opportunities for CO 2 Utilization and Negative Emissions at the Gigatonne Scale. Joule 2(5):805–809. doi:10.1016/j.joule.2018.04.018
McDermott, F., Barros, R., & Cooper, M. (2019) An investigation of waste basalt (quarry dust) as a soil amendment to sequester atmospheric CO2. Conference paper: EGU 2019 (Vienna).
Minx, J. C., et al. (2017). Fast growing research on negative emissions. Environmental Research Letters 12(3):035007. doi:10.1088/1748-9326/aa5ee5
Oldfield, F., et al. (2014) The Anthropocene Review: Its significance, implications and the rationale for a new transdisciplinary journal. The Anthropocene Review 1(1):3–7
de Richter, R., et al. (2017) Removal of non-CO2 greenhouse gases by large-scale atmospheric photocatalysis. Progress in Energy and Combustion Science 60:68-96.
Sanchez, D. L., et al. (2018). Near-term deployment of carbon capture and sequestration from biorefineries in the United States. Proceedings of the National Academy of Sciences 115(19), 4875–4880. doi:10.1073/pnas.1719695115
Schlissel, D. & Wamsted, D. (2018) Holy Grail of Carbon Capture Continues to Elude Coal Industry. Institute for Energy Economics and Financial Analysis.
Sole, Ricard & E, B.. (2001). Signs of Life: How Complexity Pervades Biology. New York.
Strefler, J., et al. (2018). Potential and costs of carbon dioxide removal by enhanced weathering of rocks. Environmental Research Letters 13(3):034010. doi:10.1088/1748-9326/aaa9c4
Paustian K., et al. (2019) Soil C Sequestration as a Biological Negative Emission Strategy. Frontiers in Climate 1:8. doi:10.3389/fclim.2019.00008
Rogelj, J., D. et al. (2018) Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. In Press.
Michael J Walsh et al 2016 Environ. Res. Lett. 11 114006
Williams, P. J. le B., & Laurens, L. M. L. (2010) Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy & Environmental Science 3(5):554. doi:10.1039/b924978h
Wolsko, C., Ariceaga, H. & Seiden, J. (2016) Red, White, and Blue Enough to be Green: Effects of Moral Framing on Climate Change Attitudes and Conservation Behaviors. Journal of Experimental Social Psychology
Zalasiewicz , J. (2016) Scale and diversity of the physical technosphere: A geological perspective The Anthropocene Review 1–14.
Zeman, F. S., & Keith, D. W. (2008). Carbon neutral hydrocarbons. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366(1882):3901–3918. doi:10.1098/rsta.2008.0143
留言